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The dynamics of the Lorenz model in the "turbulent" regime (r > rr) is 
investigated by applying methods for treating many-body systems. Sym- 
metry properties are used to derive relations between correlation functions. 
The basic ones are evaluated numerically and discussed for several values of 
the parameter r. A theory for the spectra of the two independent relaxation 
functions is presented using a dispersion relation representation in terms of 
relaxation kernels and characteristic frequencies. Their role in the dynamics 
of the system is discussed and it is shown that their numerical values 
increase in proportion to ~rr. The approximation of the relaxation kernels 
that represent nonlinear coupling between the variables by a relaxation 
time expression and a simple mode coupling approximation, respectively, 
is shown to explain the two different fluctuation spectra. The coupling 
strength for the modes is determined by a Kubo relation imposing self- 
consistency. Comparison with the "experimental" spectra is made for 
three values of r. 

KEY WORDS: Turbulence;  Rayleigh-B~nard layer;  random behavior of 
nonlinear differential equat ions;  f luctuat ion spectra; dispersion relation 
representation ; relaxation kernel ; mode-mode  coupling. 

1. I N T R O D U C T I O N  

The current  revival of  interest in turbulence (1~ has quite natural ly been 

accompanied  by a more  general one in systems governed by nonl inear  

equat ions  exhibit ing transit ions to irregular behavior.  As a result models  

originally devised in biological  or meteorological  contexts have not  escaped 

the at tent ion o f  physicists. 

May  C2~ and Oster (a/ showed that  a wide class o f  simple determinist ic 

popula t ion  models  used in ecology can display chaotic  behavior.  Varying 

one parameter ,  the solutions o f  the one-dimensional  nonl inear  difference 
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equations which define these models go from stable points through a sequence 
of bifurcations into stable cycles of increasing period and finally into a 
chaotic regime which may contain periodicity stripes. (3~ 

Reducing a model for finite-amplitude convection, Lorenz ~4~ discovered 
that a simple three-dimensional system of nonlinear differential equations 
showed transition to random "turbulent" behavior and discussed the form 
of nonperiodic orbits. In this model, also periodicity regions are imbedded (5~ 
in the random regime. His equations describe conduction and convection 
reasonably well. They also describe qualitatively the onset of turbulence in 
Rayleigh-B6nard layers of fluids with not too small Prandtl numbers. (1,6~ 

One of the interesting features of the random behavior of this model is 
the possibility of doing statistical mechanics without introducing external 
noise sources. (6) 

Orszag (7) investigated and demonstrated the randomness of a system of 
five nonlinearly coupled differential equations by numerically evaluating 
some correlation functions. McLaughlin (8~ did numerical calculations for the 
Lorenz model, showing that correlations phase mix to zero. 

The purpose of this paper is to elucidate the dynamics of the Lorenz 
model in the "turbulent" regime by applying statistical methods for treating 
many-body systems. 

Symmetry properties of the model introduced in Section 2 are exploited 
in Section 3 to establish relations between correlations and reduce the number 
of independent relaxation functions to two. These functions are calculated 
numerically for several values of the parameters. 

A theory to explain the dynamics of the system as displayed in the 
relaxation functions and the oscillatory movement in phase space is presented 
in Section 4. Central to this theory is a dispersion relation representation (~ 
of the relaxation functions generated by a Mori-Zwanzig projector formal- 
ism (1~ involving relaxation kernels and characteristic frequencies. These 
frequencies are shown to dominate the phase space motion. They are derived 
and calculated as the simplest combinations of the model variables. The 
relaxation kernels represent nonlinear coupling of the three modes. 

The result of a simple mode coupling approximation is compared with 
the "experimental" spectra. 

2. T H E  M O D E L  

The modeF 4~ is defined in terms of the dimensionless variables x, y, z, 

5 c =  cr(y  - x ) ,  p =  r x  - y - x z ,  2 = - b z  + x y  (1) 

Applied to thermal convection in the B6nard problem, (4'6) the parameter 
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stands for the Prandtl number of the fluid, r = R / R c  is the ratio of 
the Rayleigh number R to the critical value Rc for onset of convection. 
The parameter b is connected with the wave number of the convection 
roils. 

The variable x measures the velocity of the convective motion, z corre- 
sponds to the deviation of the vertical temperature profile from linear 
conduction behavior between the horizontal boundaries confining the fluid, 
and y measures the horizontal dependence of the above temperature 
deviation. 

With the substitution 

)g = y - x (2) 

(1) can be rewritten as the system of equations 

= ~ v ,  ~ = ( r -  1 ) x - ( ~ +  1 ) y - x z ,  2 =  - b z + x ~ v + x  2 (3) 

We prefer (3) to (1) for two technical reasons: (1) A numerical integration of 
(3) is easier since the average absolute size of the derivative of~ is smaller than 
that of y. (2) x, y, z are orthogonal to each other in a sense explained in 
Section 3.3. 

Equations (3) have three steady-state solutions: The trivial one 

x = ,v  = z  = 0  (4) 

represents the state of conduction which is stable for r < 1 ; the other steady- 
state solutions 

x = + [ b ( r  - 1)]112; y = 0; z = r - 1 (5) 

describe convection in left and right turning rolls and are stable for r > 1. 
For a picture showing the variables x, y, z and their relationship to observable 
quantities see Fig. 1 of Ref. 6. 

Linear stability analysis of the convection solution (5) shows (4'6> that 
they become unstable for r > rr, 

o + b + 3  
rr = c~ (6) 

~ - b - 1  

With the values ~ = 10 and b = 8/3 originally chosen by Salzman (11> and 
Lorenz <~ the threshold value rr is 24.74. However, for 21 < r < 24.74 there 
already exist finite-amplitude instabilitiesY +) Beyond the "turbulence" 
threshold rr, the trajectories are nonperiodic and irregular. There are, 
however, values of r > rr for which the system exhibits periodic motionsY 5> 
The trajectories in the nonperiodic regimes to which we restrict ourselves 
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seem to  belong to  a "strange attractor"(12) type solution, which, being locally 
the product of a Cantor set and a two-dimensional surface, has measure zero 
in phase space. 

Figure 1 shows the trajectory for r = 30 projected onto the x-y  plane 
and onto the x - z  plane for a time interval of 4.5. The points denote the 
steady-state solutions (5). The crosses indicate roughly the intersections with 
the x - z  plane and the numbers their consecutive order. Since we are mainly 
interested in the statistical aspects of the trajectories as discussed in Sections 
3.3 and 4.1, we refer to Refs. 4 and 6 for a detailed discussion of these 
trajectories. 

l 
z 

6: :9 

Fig. 1 .  Trajectory of the Lorenz model (r = 30, elapsed time 4.5) projected onto the 
x-)z plane (bottom) and onto the x - z  plane (top). The points are the steady-state solutions 
(5). Crosses indicate intersections with the x - z  plane numbered according to their 
consecutive appearance. 
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3. STATISTICAL PROPERTIES OF THE SYSTEM IN THE 
N O N P E R I O D I C  REGIME 

3.1. Averages 

Let A(t) be a real, well-behaved function of x(t), y(t), and z(t) in the 
sense that the time average 

(A)x  = lira| ~ dr A(t + ~r) (7) 

over a trajectory specified by the initial condition (x(t),y(t), z(t))= X 
exists. Then by definition (A)x  is independent of t but depends in general on 
the trajectory. In fact, the averages we shall discuss later seem "a lmos t "  
independent of the orbits. This has been confirmed numerically by calcula- 
tions with randomly chosen values for X. The restriction "a lmos t "  refers to 
exceptions like the steady-state points (4) and (5). Obviously they yield 
different averages. Since after a finite time all trajectories are confined to 
stay within a finite volume of phase space, (~ it is plausible but unproven that 
the averages (7) are independent of 3[ with the exception of a set of points of 
measure zero. 

Orszag's (7~ numerical results for a similar five-mode system with "' energy" 
conservation ~ =  1 dx~2/dt = 0 indicate that time averages over a single orbit 
equal space averages over the surface of constant energy for almost every 
orbit. 

All averages reported later were calculated over trajectories specified by 
the initial values zo = �88 x0 = Y0 = ~ /~ .  The subscript X will thus be 
dropped in the following. 

3.2. Symmetr ies and Correlations 

In this section we derive the properties of correlations exploiting time 
translational invariance of (7) and the symmetry of the equations (3) under 
the parity operation x, 3z--> - x ,  -3z. The latter symmetry requires that 

(A(x ,y ,z) )  = 0 if A ( - x ,  - y , z )  = - A ( x , y , z )  (8) 

In particular, 

( x )  = ( y )  = 0 (9a) 

(xz) = (yz )  = 0 (9b) 

Time translational invariance requires that 

d (A(x,);, z)) = ( ~ A  ~A 
d--t \ ~ sc + ~ ~ + ~ z; = 0 (10) 
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f rom which follows the relation between the moments  

( x ~ z  m) = (k,  l, m)  (11) 

O =  k a ( k  - 1, l +  1, m )  

+ l[(r - l ) (k ,  l, m)  - (a + 1)(k, l, m)  

- ( k  + 1, I - 1, m + I ) ]  

+ m [ ( k  + 1, l + 1, m - 1) + ( k  + 2, l , m  - 1) - b ( k , l , m ) ]  
(12) 

These relations could be helpful in constructing the probabili ty distribution 
function. However,  one must bear in mind that  the number  of  moments  
grows faster with order  n = ]k I + Ill + ]m] than the number  of  relations 
connecting them. We list the first few relations, some of  which will be used 
later: 

(xk~)  = 0, k = 0, +1,  _+2 .... (13a) 

( x  2) = b ( z )  (13b) 

( x ~ z )  = - ( a  + 1)Oe 2) (13c) 

( x ( x  + y ) z )  = b (z  2) (13d) 

( x2z )  = ~r()e 2) + (r - 1)(x 2) (13e) 

b(x2z )  = 2a(x~z )  + ( x ' )  (13f) 

The equalities (13b)-(13f) were reproduced numerically within a few parts 
per thousand for  those r values plot ted in Fig. 2. The above moments  can 
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Fig. 2. Average values <z) (dots) and (z2)/r (triangles) for several values of r. 
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be expressed in terms of only two. For example, we can use <z> and <z2>, 
which have the simplest behavior as a function of r. 

Figure 2 shows the linear dependence of <z) on r, the slope being slightly 
less than one. <z 2) contains r 2 terms, as can be seen from the plot of  <z2)/r 

displayed also in Fig. 2. However, one should be careful in approximating 
<z2> by <z>r, since then <s according to Eqs. (13c)-(13e), 

<~2> = b[(r - l)<z> - <z2>] (14) 

would become negative. Numerically one finds <~v2> to contain r 2 behavior. 
Figure 2 indicates that the extrapolated value of <z> from above threshold 

<z(r --> r J>  does not give the steady-state value rT - 1. The associated dis- 
continuous physical quantity is the heat flux, since in the Lorenz model z is 
proport ional  to the Nusselt number, which expresses the ratio of  the total heat 
flux to the heat transported by conduction. A similar first-order phase 
transition at rr was also found in a system of truncated Boussinesq equations 
consisting of 39 Fourier components. (13) These calculations (la) were done for 
Rayleigh-B6nard layers of  low-Prandtl-number fluids, where the Lorenz model 
is no longer applicable. The experimental Nusselt number of  helium, how- 
ever, did not show a discontinuity at rr.(14> The normalized fluctuations of  z 

A(z) ( <~>~]~ ~(~) = ~ = 1 - <-~! (15) 

are shown in Fig. 3 as a function of r. They increase upon approaching the 
threshold rr f rom above. 

.4 

'~' 2 N 

I 

. . . .  i ;o . . . .  ,;o . . . .  ,;o . . . .  2;o . . . .  
rT r 

Fig. 3. Average normalized fluctuations A~(z) -- A(z)/<z2> 1/2 [(15)l of z for various 
values of r. 
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3.3. T i m e - D e p e n d e n t  Correlat ions 

The basic quantity to be calculated is the matrix of relaxation functions 

(16) ~( t )  = ( s  ~ - i s ( t )  

with S(t) the time-dependent matrix of  correlations 

if; Sij(t) = lira d,  Ai(,)Aj(t + ,) (17a) 

S~j(t) = (A~Aj(t)) = S ~ ( - t )  (17b) 

between the variables 

A1 = x, A2 = y, A3 = 8z = z - (z )  (18) 

S o denotes the diagonal matrix S(t = 0) of initial values 

0 ((Sz) 2) 

It  is convenient to discuss the Laplace transform of S~j(t), 

S~j(z)= A i ~ A j  ; I m z  > 0 (20) 

in terms of the time evolution operator L, 

L = - i0t (21) 

which allows us to formally write time-dependent functions A(t) as 

A(t) = e'L'A (22) 

For later use we will introduce the scalar product between functions A(t) and 
B(t):  

(AIB) = ( A ' B >  = S~ (23) 

With this scalar product the variables A~ of (18) are orthogonal. 
Time translational invariance together with the fact that all occurring 

functions A and B will be real-valued implies that 

(AILB) = (LAIB) (24) 

i.e., L = L + is Hermitian and S~j(z) reads 

1 A 
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S~j(z), being defined as a Laplace transform for Im z > 0, has a spectral 
representation(g.15~ 

= ( a~, S,5(~o ) 
S,j(z) (26) J 7r ~ - - Z  

for Im z # 0. Since the discontinuity of S~j(z) along the real axis 

S;~(oJ) = -zr(A,] 3(w + L)IAj) (27a) 

is here the imaginary part of S on the real axis, it is given ~5~ also by the 
Fourier transform S~j(t), 

S~5(oJ) = - dt e~t<A~A,(t)) (27b) 

Note that -S~"~(o~) is real, positive, and even in ~o. 
Since LA~ has the same parity under the symmetry operation 

x, s -+ - x ,  - ~  as A~, it follows that Sla = S2a = $3~ = Sa2 = 0, so that 

0 ~ ( z )  

The above form of the relaxation matrix is caused by parity and the linear 
decoupling of z from x and ~v in the differential equations (3). 

Since these equations contain only two independent variables and a 
"conservat ion" law ~ = oy, only two independent relaxation functions, say 
q~22(z) and ~b33(z), have to be calculated. Applying the equation of motion to 
the resolvent 

1 1 
z - - =  1 - - - L  (29) 

z + L  z + L  

one finds 

zr = - i (  ~o2/~)~2~(z)  (30) 

z r  = i~r (31) 

z~r  = z + ~ o ~ ( z )  (32) 

where the frequency ~0 is given by 

f~o 2 = (22 ) / ( x  2) (33) 

Figures 4 and 5 show the numerically obtained relaxation function 4,22(t) and 
q~33(t) for three different values of r above threshold in the nonperiodic 
region. In both relaxation functions at least two different characteristic time 
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Fig. 4. Normalized relaxation function ff2a(t) for three values of r. 

scales are present. Both correlations display a sharp initial decay of memory 
within a time of  the order of 0.2, corresponding roughly to an average 
revolution of the phase point around one of the two steady-state points. This 
initial decay becomes more pronounced with increasing r. Then within a time 
of the order of 1, ~2~(t) phase mixes to zero, exhibiting a few irregular 
oscillations for the largest value of r. The time for complete loss of memory 
corresponds to the frequency of a complete revolution around both steady- 
state points. 

~33(t) decays on a much longer time scale, exhibiting regular oscilla- 
tions. ~8) The frequency of these oscillations around the average value of z is 
roughly twice as big as that for a complete revolution of the trajectory 
around both steady-state points, which can be seen without calculation from 
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Fig. 5. Normalized relaxation function r for three values of r. 

the form of the trajectories displayed in Fig. 1. These frequencies will be 
discussed in detail in the next section. 

4a~(t) is reproduced very well after one period by a simple, exponentially 
damped cosine oscillation with decay times of the order of  10 and oscilla- 
tion frequencies ~ which increase with increasing r. They will be discussed 
later. 

3 . 4 .  T e c h n i c a l  D e t a i l s  

All averages reported in this work were obtained on a Xerox Sigma 7 
Computer  using a four-point Runge Kut ta  procedure with time steps of  0.001 
to integrate the system of differential equations (3) for several values of  the 
parameter  r with a = 10 and b = 8/3 being fixed. For the r values discussed 
in this work an integration over a time interval T = 150 for equal time 
correlations and T = 500 for time-dependent correlations ensured numerical 
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convergence of the integrals of type (7) being evaluated as sums over 
rectangles. 

An estimate for the errors due to the cutoff at T = 500 was obtained in a 
calculation of 

1;~ A,(~.)A~(, + t) 
r T) = ~, dr ( A z )  (34) 

done for i = 2, 3; t --- 0.1, 0.2,..., 1.5; T = 500, 600,..., 4900 using time steps 
of 0.01. Since the variations of 4,,(t; T) died out with increasing T, the maxi- 
mal variation 3,( 0 over the interval T = 500--4900 was used as an upper 
estimate for the cutoff errors: For values of t around the minima of ~aa(t) the 
cutoff error estimate 33a(t) is three to four times the point size used in Fig. 5. 
Otherwise 8a3(t) as well as 3z~(t) are less than twice the point size used in 
Figs. 4 and 5, respectively, to plot the relaxation functions ~,(t). 

An average of an expression A was set to zero when its reduced variance 
A~(A) = ( 1 -  (A)2/(A25) ~z2 was unity within less than three parts per 
thousand. This is the reason for the cutoffs in Fig. 4. Figure 1 was plotted by 
a Hewlett Packard 9830 desk machine using the two-point procedure used by 
Lorenz (~ with a time increment of 0.01. 

4. FLUCTUATION SPECTRA 

4.1. Characteristic Frequencies 

The motion of a phase space point as displayed in Fig. 1 is dominated 
by three different characteristic frequencies f~0, f ~ ,  and f~.  The low fre- 
quency f2o of (33) accounts for complete revolutions around both steady-state 
points (5), whereas 

f ~  = ~ ) l ( x  ~) = ( ~ ) / ( ~ )  (35) 

characterizes high-frequency circular movements around one of the steady- 
state points (5). Finally, 

f~z 2 = (~2)/((3z)2) (36) 

measures the oscillation of 3z = z - (z) .  
Note that the frequencies defined above are the simplest ones that can 

be formed from the variables A~ and A~ since 

(A~/A~) = (A~A~/A~ 2) = �89 0t(ln A~ 2) = 0 (37) 

Figure 6 shows the smooth increase of these frequencies proportional to X/r. 
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Fig. 6. Characteristic frequencies (dots) of the model for various values of r. Solid lines 
denote the curves ~rr, 1.77... ~rr, and (14/3)~r, respectively. Squares represent the 
oscillation frequencies e of ~aa(t) according to Fig. 5. 

Using the definitions (33), (35), and (36) and the m o m e n t  relat ions (13), one 
finds 

f~o 2 = cr 2 ( 'v2) (38a) 
( x  ~ ) 

f l o ~  2 = ( x 2 [ z  z - ( r  - 1)z]) _ 2e(r -- 1) - (g + 1) z (38b) 

nz 2 = (~2[x ~ + ( .  + 1)(2• + b)]) (38c) 
<z 2) - <z)2 

These expressions, together  with the fact that  on the average x 2 ~ z ~ r 
(Fig. 2) and y2 ~ r2 [(14)], explain the ~ / r  behavior.  The solid lines in Fig. 6 
represent  the graphs  of  ~/r,  1.77 ... ~/r,  and (14/3)X/r. 

These relations imply that  in the t ime 2~/~0 during which the phase  
point  moves  f rom a minimal  x value to a maximal  one and back a long the 
dumbbel l -shaped t rajectory displayed in Fig. 1 the y values either run through 
14/3 ~ 5 consecutive ex t rema along the same t ra jectory or circle a round  one 
o f  the steady-state points  five times. The  sign of  6z, on the other  hand,  changes 
twice (1.']8 times) as frequently as that  o f  x. 

The above prefactors  can be writ ten as 1.77 . . . .  [(r + 1)/r + b - 2 
and 14/3 = (~ - 2b. Since these relations were not  checked for  different 
values o f  the parameters  ~ and b, they could be accidental. 
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Note that f~0(r-§ rr) does not tend to zero as a consequence of the 
behavior of (y~) [(14)] or (z)  and (z 2) displayed in Fig. 3. On the other hand, 
f2~(r --~ rr) seems to go toward the frequency ~Or, ~6~ 

~oT=(2crb c r + l  ) ~`2 o - b - I (39) 

one finds studying the trajectories caused by linear perturbations from the 
steady-state solutions at the threshold r = rz. 

The squares in Fig. 6 represent the oscillation frequencies of q~aa(t) of 
Fig. 5, i.e., the peak positions ~ in the spectrum of the Az motion. Thus, since 
f~z is only slightly bigger than e, it is a characteristic frequency of the Aa 
motion. 

The relevance of the frequencies (38) for a theory of the relaxation 
spectra is manifested by restricting the shape of the spectra as sum rules 
according to (27a) 

~ f~02 for i = 1 

- -oo ,,,24,7,(,o) = (Adh,) = f~| for i = 2  (40) 

I ffZ~ 2 for i--- 3 

The zeroth sum rule of  the relaxation spectra reads 

f d ~ ,  - - - g  ~ . ( , o )  = 1 ( 4 1 )  

Incorporating characteristic frequencies or sum rules into a theory for 
relaxation spectra is not a new problem. The sum rules connected with 
density and current fluctuations in fluids, for example, are conveniently dealt 
with in continued fraction representations ~1~'1.) of the Laplace-transformed 
correlation functions using relaxation kernels and dispersion relations, c9) 

4.2. Relaxation Kernels and Dispersion Relations 

Here the relaxation functions ~b,j(z) will be expressed by relaxation kernels 
and sum rules in a continued fraction representation. We therefore introduce 
the projector pcl0~ on the linear variables A,, 

P = [A,)(S~ (42) 

and the orthogonal complement 

Q = 1 - P (43) 
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Both are Hermitian. Exploiting the resolvent identity 

p z _ _ _ ~ p [ z + p L p _ p L  Q 1 ] z +  QLQ QLP = P (44) 

and Eq. (25), one finds 

~ ( z )  = [z + ,o - M ( z ) ] - i  (45)  

where the frequency matrix ~o is given by 

~ = (S~ (46) 

The relaxation kernels 

1 
M~(z) = (S~ z + QLQ QL[Ae) (47) 

are correlation functions in whose time development linear variables are 
projected out. (15~ The resolvent [z + QLQ] -1 generates only nonlinear 
combinations in a function subspace orthogonal to the one containing linear 
combinations of A=. A successive projection procedure can now be applied to 
M(z) which yields a result similar to (45), thus generating a further step in the 
continued fraction. Each successive kernel M(z) has the same analytic 
properties and symmetries (ls~ as the original relaxation function <}(z). In 
particular M(z) can be given a spectral representation like Eq. (26) which 
connects its real part M'(~>) and imaginary part M"(~o) along the real axis by a 
Kramers-Kronig dispersion relation 

M'(<o) = P f d__d~. M"(__d)m - co (48) 

Exploiting parity and time translational invariance, one finds for the fre- 
quency matrix (46) 

i 0 n0/e ~ / 
~o = / n o t - e / n o  0 ; ]  (49) 

\ 0 0 

The matrix of memory kernels (47) has the form 

(i ~ :) M(z) = M22(z) (50) 

0 Maa(z) 

Inserting (49) and (50) into (45), one finds 4(z) to be of the form (28) as well 
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as the equation of motion relations (30)-(32). The two independent relaxation 
functions read 

1 
,~z2(z) = z z2 _ f2o2 _ zM22(z)  (51) 

1 
r - z - M33(z)  (52) 

The memory kernels M22(z)  and M33(z) reflect the nonlinear coupling of the 
x, ~ motion in Eq. (3). 

Let us discuss M33(z)  first. From Fig. 5 one infers that q~3~(z) must have 
poles at frequencies z = + ~ - i / z ,  1/r being small compared to E ~ ~ as 
plotted in Fig. 6. Such a pole structure is easily generated by representing 
M33(z) by a kernel ~,33(z). Repeating the projection procedure (44), one finds 

z - 7 ~ ( z )  (53) 
4~33(z) = z ~.._ ~ / _  z~,~8(z) 

with 733(z) given by 

1 1 1 
733(z) = ~ (A3I (L  2 - f2~ 2) z + Q Q L Q Q  (L2 - f2~2)IA3) (A31A3) (54) 

The projector P = 1 - Q projects onto QL[A3) ,  being orthogonal to the 
original variables A,. 

The approximation 

o r  

~'33(z) = 0 (55a) 

(L 2 - ~2)[A3) = 0 (55b) 

would describe an undamped periodic motion of the A3 component with 
frequency f2~. Actually, the frequency E of the A3 movement is a little smaller 
than f2~ (cf. Fig. 6) and is slightly damped. That means that a single time 
relaxation approximation is reasonable, 

~,~8(eo) = 0; 7~3(~ = - 7  (56a) 

~;,(o~) = - v f ~ / / [ ( o ~  2 - ~ / ) ~  + o~v ~] (56b) 

This yields for 7 << ~q~ a sharp peak shifted to a smaller frequency than f~ as 
required by Fig. 5. 

4.3. Mode Coupling 

In the following section it will be demonstrated that a simple mode 
coupling picture for M22 consistently explains the spectrum ~2(oJ) of the A2 
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motion. As discussed following Fig. 4, it is not dominated by a single fre- 
quency and will thus be more complicated than that of the A3 motion. It 
exhibits, according to Eq. (51), an oscillator spectrum determined by the 
static restoring frequency flo--note that (32) implies (1/z)r = o = - f l y  2 

- -and  the complex damping kernel M22(z) 

1 1 (57) 
M22(z) = (A1AaIQ z + Q L Q  Q[AIAa) SO--~2 

which represents the coupling of the A~ or A2 variable to all other nonlinear 
combinations of the A~. The spectrum of the kernel is dominated by spectra 
of the coupled AzAa motion, as indicated by the form (57) representing 
correlations of the nonlinear variables A~A3. 

Within mode coupling procedures the spectrum M~2(co) is approximated 
by a convolution of the spectra of the two "modes"  corresponding to the A~ 
and Aa motion. Thus 

M~2(co) .,~ r r (58) 

Since the relaxation spectrum r can well be approximated by 3 functions 
at frequencies + e, one finds 

M~z(co) ~ [r - ,) + 4,[~(~o + e)l (59) 

The spectrum 

r = (flo~/,-o2)r (60)  

turns out to be a more or less smooth Lorentzian-shaped curve with half- 
width P ~ 1.2fl0. As explained following Fig. 4, the correlations of A decay 
within a time of the order of 1/fl0, which gives rise to the above described 
Lorentzian: For our purposes it is sufficient to use in the relaxation kernel a 
Lorentzian for r which gives 

A2(  1 t ) (61) 
M22(z) = --~ Z -  E + i F  + z +  E +  iF 

and 

[ , 1 )]1 
r = z  z 2 -  ~o 2 - z ~  z - ~ + i r  + z + E + i P -  (62) 

The value of A measuring the strength of the "vertex" for the interaction 
of A1 and A3 modes has still to be determined. There are several possibilities. 

One is to ensure the correct high-frequency behavior of r by adjust- 
ing A 2 to the first sum rule of M~2(z). That would require 

A2 = (.vILQL[)e) _ (22) (22) (63a) 

= 0= 2 - 002 (63b) 
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which gives, according to Fig. 6, values of A roughly 4-5 times larger than 
f~0. However, such a high frequency does not play an important role in the 
spectra which are centered around f~o and f~.  

So the other possibility for determining A by enforcing the correct low- 
frequency behavior is more promising. From (32) and (51), we find the exact 
relation 

4,~(o) = 0) = M;2(co = 0)/g)02 (64) 

which is the generalized version of a Kubo formula. (9'~5~ Note that all 
relaxation functions q~'~'i(oJ) as well as the kernels M['i(o)) are even in w, causing 
the odd, real parts to vanish at o) = 0. If q~(co) were really a Lorentzian, 
(64) together with (61) would uniquely determine A 2 to be 

(65) 

thus imposing a self-consistency condition upon the spectrum ~1(~o). 
Figure 7 shows a comparison of the spectra q~2(~o) (dots) obtained by 

Fourier-transforming the "experimental" data displayed in Fig. 4 with the 
theoretical results 

. M "  (co ~ 
r ) = m2 22~. J 

[o~ 2 - ~ o  2 - ~, M ; 2 ( o ~ ) ]  + [o~M;~(o~) ]  ~ 
(66) 

using the mode coupling approach (61) for the kernel M22(z). The param- 
eters P --- 1.2120 and E as shown in Fig. 6 are fixed by the experimental 
spectra q~l(oJ) and q~3(o~) entering the mode coupling expression (58). The 
coupling strength 2~ is determined by the self-consistency restriction (65). 

The spectra displayed in Fig. 7 are rather broad. On the low-frequency 
side they show an co 2 increase, reflecting the "conservation" law (32). There 
is a long, high-frequency tail extending to values as high as f~oo. The main 
peak of the spectrum according to experiments is slightly above f~o, whereas 
the theoretical peak position is roughly located at f~0. 

The spectra show a secondary peak or shoulder well above f~0 which 
cannot be explained in terms of the characteristic frequencies f~0 and f~o. 
According to Eqs. (51) and (57), this high-frequency structure is caused by 
the coupling of A2 motion to the A3 motion represented by a coupling function 
M " -  22(o~) of the form (58). The presence of such a coupling term causes the 
relaxation function ~22(z) [(62)] to have a pole whose position in the lower 
half of the complex plane is pushed out toward frequencies greater than Q0 
with increasing coupling strength A. 

The broad type of the spectra is explained by the fact that neither of the 
extreme cases, A much smaller or much larger than f2o or I', is realized 
according to Eq. (65). The theoretical spectra are skewed toward lower 
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Fig. 7o Spectrum -q~2(,o) (dots) compared with the theoretical result (66) for three 

values of r. 

frequencies compared to "experiments," indicating too small a coupling 
strength A. Increasing A shifts the whole spectrum toward higher frequencies. 

Note that A was determined by the zero-frequency value q~l(0) assuming 
4~1(~) to be a Lorentzian. With increasing r the experimental spectra display 
more structure, indicating that, according to Lorenz, (s) the system approaches 
a periodic regime with increasing r. Thus one is no longer justified to approxi- 
mate q~l(w) in the relaxation kernel (59) by a smooth Lorentzian, which, 
because of (66), causes the theoretical spectra to be too smooth. To solve 
such a problem self-consistently is feasible ~17) but requires more numerical 
effort. 

Since the objective of this paper was to explain the statistical dynamics 
of the model, we neither tried to minimize nor optimize the choice of param- 
eters. Even so this simple mode coupling approximation reproduces with 
only two fixed parameters E/~o ~ Dz/~o ~ 1.78 and P/~0 ~ 1.2 and the 
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characteristic frequency f~o ~ ~/r the spectra q~2(~o) reasonably well for r 
values not too far above threshold. 

5. S U M M A R Y  

The basic goal of this paper was to show that the dynamics of the Lorenz 
model above the "turbulence" threshold could be described by using standard 
methods for the statistical treatment of many-body systems. 

Time translational invariance of averages and the inversion symmetry of 
the model-defining equations were used to derive relations between various 
correlations functions and to reduce the nine relaxation functions of the 
model to only two independent ones. 

The three simplest averaged frequencies to be defined by the variables of 
the model were shown to characterize its phase space motion. These charac- 
teristic frequencies increase in proportion to ~r .  

The spectra of the two independent relaxation functions evaluated 
numerically for three different values of r were explained in a standard 
dispersion relation representation for correlation functions generated by a 
Mori-Zwanzig projector formalism. From this scheme emerged continued 
fraction expressions involving the characteristic frequencies and two different 
relaxation kernels. 

It was demonstrated why one of the kernels is very small, thus causing 
the 3-function-like spectrum of the z motion and the shifting of the peak 
position to a slightly lower frequency than the corresponding characteristic 
frequency. 

The other spectrum is much broader, exhibiting structure which was 
shown to be a consequence of the nonlinear coupling of the motion of  the 
three variables. This nonlinear coupling of the modes is expressed by the 
relaxation kernel. A simple mode coupling approximation for the spectrum 
of the kernel, with the coupling strength of the modes determined by a self- 
consistency condition imposed on the spectra involved, reproduced semi- 
quantitatively and explained the second "experimental" spectrum for several 
values of r. 
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